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COMMENT 

Phase factor for charge-monopole system 

J C Martinez 
Department of Physics, National University of Singapore, Kent Ridge, Singapore 051 1 

Received 10 April 1985 

Abstract. We calculate the Green function for a charge-monopole system and show that 
a non-integrable phase factor emerges without using the classical notion of path. 

Twelve years ago a formulation of gauge fields in terms of non-integrable phase factors 
was advocated (Wu and Yang 1975). Many of the arguments presented therein were 
based on the classical notion of ‘path’. In this comment we show that for a charge- 
monopole system a quantum derivation of this phase factor can be given. This 
calculation lends us confidence that the phase factor really describes the transition 
amplitude for a charge moving about a monopole and is not a flux about some 
hypothetical path. Classically such paths make sense, but in quantum theory the 
concept of a path gives way to that of a transition amplitude. 

We begin by writing down the Schrodinger equation for a charge e of mass M in 
the field of an infinitely massive monopole 

( 2 M ) - ’ [ p - ( e / c ) A I 2 I C ,  = EIC, (1) 

A = $ ( g / r )  tan(0/2) ( 2 )  

where the vector potential A is given in spherical coordinates by 

with 

B = V x A = g r /  r3 .  

The vector potential is singular along the negative z axis. By imposing the Dirac 
quantisation condition 

eg/ Ac = s = integer or half-integer (3)  
it can be shown that henceforth this string singularity plays no role in the physics of 
the system (Dirac 1931). The eigensolutions of (1) have been known for some time 
now (Goldhaber 1965, Boulware et al 1976). 

q?,,,, = ( 2 J +  l ) ” 2 j q ( k r ) d ~ - , , , s ( 0 )  eimd 

J = IS I ,  / S I  + 1, Is/ + 2 ,  . , . 
m = -J,  - J +  1,. . . , J - 1, J 

k = (2ME)”’  E > O  

q + f = [ ( J  + f)’ - s’]”’ 

(4) 
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where j q  is a spherical Bessel function, d J  is a rotation function and s is defined by 
(3). There are no negative energy solutions of ( 1 ) .  

The Green function may now be written as an expansion in terms of the eigenfunc- 
tions given above 

G(r t ;  r ’ t ’ ) = z  (2J+1) 
Jm 

where (a, y, P )  are the Euler angles corresponding to the successive rotations (d’, e’, 
-4’) and (A -8, -4) 

COS y’ = COS 8 COS e’+ sin 8 sin 8’ COS( 4’ - 9). 
The k integral is not convergent. However, if we go over to Euclidean space 

( t  - t ’ )  + -i( t - t ’ )  the integral may be evaluated using Weber’s formula (Watson 1958). 
In Minkowski space then our Green function takes the form ( J ,  is a Bessel function) 

where p = q +f, T = t - t ‘  and Cl= a + P is the solid angle subtended at the origin by 
the z axis and the vectors r and r’. We see the phase factor exp(isR) in (7). Note 
that our discussion includes the quantum mechanical interaction between the electric 
and magnetic charges. Several consequences may now be derived. 

We may calculate the scattering amplitude as follows. The scattered wave $ : ( r )  
has the form 

7rilt‘l 3 / 2  
$:( r )  = lim ($) G(r, 0; r‘, t ’ )  exp[i(k r - k2t/2M)] 

t’+ -m 

(Pechukas 1969). Substituting the expression we obtained above we have 

1 
*:(r) - - 2kr eisn J (2J+ l)dis( y)(eikr e-iDfi + i  e-ikr). (8)  

The second term in (8)  represents an incoming wave so that the scattered wave is simply 

(9) + , J r )  - r - ’  e’”f(y) eikr 

where the scattering amplitude f( y )  is given by 

This expression is given in Boulware er a1 (1976). 



Phase factor for charge-monopole system 755 

An interpretation for (7)  can be arrived at by considering the Green function for 
infinitesimal times. Replacing T in (7) by E we write it as (si3Q is a infinitesimal flux) 

G(rt;  r ‘ t ’ )  = 

J 

I, is an associated Bessel function. The limit E + 0 may be obtained with the aid of 
the asymptotic expansion 

The result is 

G(rt; r ’ t ’ )  - (s) I ”  -$ exp( i ( r -  rf)2+isSfL+i - 
E - 0  2E 2 Mrr 

The sum over 5 may be evaluated by rewriting a formula given in appendix A of 
Boulware et al (1976) 

C (25 + 1 ) iJ (-ikr) dis (  0)  = f( rk[)’” eik”’[ e -i’”41.5-4( - $k[) - i 

where if = r (  1 +cos e ) ,  77 = r (  1 -cos e). Applying expansion (12) on both sides of this 
result we obtain the desired expression 

- f i  k [ ) ]  
J 

The Green function for infinitesimal times is then 

G (  rt;  r ’ t ’ )  - (5) 3’2 exp( iM ( r  - r’)’ + i s80  + O( E ’ / ’ )  ) . (14) 
E -0 2E 

Now it is known that the infinitesimal propagator in a vector field A is given by 
(Schulman 1981) 

Comparing the last two results we conclude that the flux term sSR in (14) comes from 
the line integral of A. This line integral may be interpreted as an infinitesimal loop 
integral by completing the loop with circular arcs to the z axis. Since these arcs 
intersect A at right angles they do not contribute to the loop integral. Moreover for 
the finite-time Green function the line integral of A must be responsible for the flux 
term sa in (7) ,  although it is clear that it also contributes to the other factors in the 
Green function. Nevertheless the line integral of A cannot be looked upon as a simple 
loop integral since the quantum propagator involves a sum over paths. Thus the 
non-integrable flux factor hides a ‘sum-over-loop integral’ of the vector field. Note 
that the phase factor for an infinitesimal path is just a flux; for a finite path the 
amplitudes sum up in a complicated way although a flux still emerges. 
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We show that s = half-integer (3 ) .  This is the Dirac quantisation condition. 
Consider the amplitude for the charge to make a complete circuit about the string: 
( r ,  8, 4)  + (r', e', 4 +27r). According to the above discussion the Green function is 
proportional to eisn where R is the solid angle subtended by a circular cap around 
the z axis with polar angle 8. Since the description of the system cannot depend on 
the position of the string we expect the Green function to remain unchanged if the 
string were rotated onto the positive z direction. In this case the Green function would 
be proportional to e-isn' where Cl' is the solid angle of the same cap as viewed from 
the negative z direction. The minus sign is due to the direction of motion of the charge. 
We have then 

or 
ei4rrs - - 1. 

It follows that 

47rs = 27rn n = 0, 1,2,  * . . (16) 

which is the Dirac result (Dirac 1931). Our discussion does not make use of classical 
paths around the string. 

The result just obtained allows us to speak of gauge transformation. A shift of the 
string from the negative to the positive z direction is really a gauge transformation. 
Thus the Dirac condition can be looked upon as a statement of the invariance of the 
phase factor around a loop under a gauge transformation. The special choice of the 
z axis for the string does not prevent us from selecting other directions. Thus the 
invariance of the phase factor is true for any gauge transformation provided the Dirac 
condition is satisfied. We may now follow up this discussion with that of Wu and 
Yang (1975) but this time without having to use the idea of a classical path about the 
monopole. 

Presumably a similar calculation may be done for other systems as well. 
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